Complete convergence for negatively dependent random variables

نویسنده

  • H. Zarei
چکیده

Let {Xn, n ≥ 1} be a sequence of independent and identically random variables. In 1947 Hsu and Rabbins proved that if E[X] = 0 and E[X2] < ∞, then 1 n ∑n k=1Xk converges to 0 completely. Recently, the strong convergence of weighted sums for the case of independent random variables has been discussed by Wu (1999), Hu and et. (2000, 2003) proved the complete convergence theorem for arrays of independent random variables and Amini and Bozorgnia (2003) studied complete convergence of the sequence 1 n ∑n k=1Xk, via. exponential bounds in the case of negatively dependent and identically random variables. Zarei (2006) extended some results of Chow (1966) for negatively dependent and identically distributed random variables. In this paper, we study complete convergence of weighted sums Tn = ∑n k=1 ankXk where {Xn, n ≥ 1} is a sequence of negatively dependent random variables and ank, n ≥ 1, k ≥ 1 is an array of real numbers where ank = 0 if k > n, |ank| ≤ CAn for An = ∑∞ k=1 a 2 nk and some 0 < C <∞. In fact we omit the condition identically distributed random variables. The material in this note is closely related to Zarei (2006) and chow(1966). In this paper we define X+ = max{0, X} and X− = max{0,−X} and IA denotes indicator function A. To prove the main result we need to the following definitions and lemmas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Complete Convergence ofWeighted Sums for Dependent Random Variables

We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.

متن کامل

Strong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables

We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.

متن کامل

The Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables

In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...

متن کامل

THE ALMOST SURE CONVERGENCE OF WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In this paper we study the almost universal convergence of weighted sums for sequence {x ,n } of negatively dependent (ND) uniformly bounded random variables, where a, k21 is an may of nonnegative real numbers such that 0(k ) for every ?> 0 and E|x | F | =0 , F = ?(X ,…, X ) for every n>l.

متن کامل

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

On the complete convergence of weighted sums for an array of rowwise negatively superadditive dependent random variables

ABSTRACT: In this paper, the complete convergence and the complete moment convergence of weighted sums for an array of negatively superadditive dependent random variables are established. The results generalize the Baum-Katz theorem on negatively superadditive dependent random variables. In particular, the Marcinkiewicz-Zygmund type strong law of large numbers of weights sums for sequences of n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006